Constant force springs
Contents |
[edit] Introduction
Constant-force springs differ from other springs, such as helically wound springs (although they do obey Hooke’s Law). This is mainly because constant-force springs are created from pre-tensioned metal strips instead of wire. They fall under the ‘extension spring’ category and are designed to provide tension in a linear direction.
[edit] What are constant-force springs?
Despite their name, these springs don’t provide true constant force; the initial force starts from a finite value. Constant-force springs resemble a wound coil and, because the force to restore the unrolled spring is nearest the roll, there is almost no restriction when it comes to speed of extension or acceleration.
After the spring is deflected to a length equal to 1.25 times its diameter, it reaches full load and maintains a relatively constant force independent of the length of the extension. The fatigue life of these springs can range anywhere from 2,500 cycles to more than one million, depending on the size and load of the spring.
The unique qualities of these springs make them valuable as a counterbalance for heavy moving parts as well. An example is a van door, which requires an extra ‘push’ before closing. Once that initial force is overcome, the door slides with ease and with near constant force.
[edit] How to choose a constant-force spring
It’s important to take several factors into consideration before choosing a constant-force spring.
The material used in making the spring (as well as its width and thickness) is one of them. Usually, in order to create high-quality constant-force springs, stainless steel grade 301 is chosen, although high-carbon steel, Inconel and other materials can also be suitable.
The initial load or force that the springs will have to overcome to reach ‘constant force’ also matters when it comes to designing the spring, as does its internal and external diameters. Equally important is the end detail of the spring, which means the outside ends that will attach to other parts and components to coil or uncoil it.
Because tolerances and requirements will vary, depending on the industry and the application of the component, it is crucial that constant-force springs are manufactured with this in mind as well.
[edit] Common applications of constant-force springs
Constant-force springs are useful in a variety of applications, such as; automotive, aerospace, medical and retail.
Some of their most popular uses include:
- Door closers
- Cable retractors
- Hose retrievers
- Gym equipment
- Hairdryers
- Toys
- Electric motors
- Space vehicles
- Furniture components
- MRI and x-ray machines
- Retractable dog leashes
- Vacuum cleaner cords
[edit] Limitations of constant-force springs
Just like other types of springs, external factors can contribute to a reduced lifespan of a constant-force spring. This can include anything from exposure to corrosive elements, which can also affect its performance, to extreme temperatures.
--European Springs and Pressings Ireland Ltd
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).